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Abstract

The aim of this work is to generalize and study a model of cell division cycle proposed recently by Zheng et al.

[Zheng Z, Zhou T, Zhang S. Dynamical behavior in the modeling of cell division cycle. Chaos, Solitons & Fractals

2000;11:2371–8]. Here we study the qualitative properties of a general family to which the above model belongs.

The global asymptotic stability (GAS) of the unique equilibrium point E (idest of the arrest of cell cycling) is investi-

gated and some conditions are given. Hopf�s bifurcation is showed to happen. In the second part of the work, the the-
orems given in the first part are used to analyze the GAS of E and improved conditions are given. Theorem on

uniqueness of limit cycle in Lienard�s systems are used to show that, for some combination of parameters, the model

has GAS limit cycles.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction and main results

The cell cycle is a fundamental phenomenon for the life. Furthermore, irregularities in the cell cycle are the one com-

mon factor in all the manifestation of human cancer [1]. Molecular biology investigations showed that the cycle is

strictly linked with oscillations in the concentrations of a limited number of substances, such as cyclin, MPF and

Cdc2. Mathematical modeling of the cell cycle in term of nonlinear models of the interaction between these substances

started in early nineties [2,3]. A model in which the interaction between Cdc2, Cdc25, cyclin and MPF was proposed in

[4]. It is a high dimensional system of nonlinear differential equations, but by way of biological simplifications and a

linear transformation of variables, a dimensionally reduced model may be obtained, which depends only on two

new state variables. Recently one of such bidimensional reduced models has been proposed and studied in the interest-

ing paper [5], where some sufficient criteria for the existence of limit cycles and for the stability of the equilibrium point

were given in the hypothesis that the contribution of one of the parameters can be neglected. In reality, in [5], an entire

family of models has been defined, but the authors did not study it and they concentrated on a particular model. On the

contrary, in the present work we will study the general family by showing that it is equivalent to a family of Generalized

Lienard�s Systems. This is important in that some relevant properties such as the stability of the equilibrium point, the

existence of limit cycles and, mainly, their uniqueness and global stability may be, at least in principle, easily studied. In

the second part of this article, the model [5] is studied and we show that the our new criteria improve the ones given in
0960-0779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.chaos.2005.04.088

* Tel.: +39 025 7489819; fax: +39 025 7489813.

E-mail address: Z20263@ieo.it

mailto:Z20263@ieo.it


1206 A. d’Onofrio / Chaos, Solitons and Fractals 27 (2006) 1205–1212
[5]. Furthermore, it is shown that, for some values of the parameters, the limit cycle is (unique and) globally asymptot-

ically stable. Numerical simulations complete the work to study the effect of periodic variation in parameters.
2. A general family of models of cell cycle and its topological equivalence with the generalized Lienard�s systems

Following [5], the biological mechanism underlying the cell cycle may be modeled by a couple of nonlinear differ-

ential equations (similar to the model [3]), which read (in adimensional form):
u0ðtÞ ¼ /̂Kðu; pÞðv� uÞ � 1þ Kðu; pÞð Þu;
v0ðtÞ ¼ c� Kðu; pÞv;

ð1Þ
where

• u(t) is proportional to the concentration of Mitosis promoting factor;

• v(t) is the sum of the concentrations of a set of other species, including the MPF, which implies, of course, the fol-

lowing constraint between the state variables:
vðtÞ > uðtÞ
(quite interestingly, Zhang et al. does not mention this biologically relevant fact);

• K(u;p) is a continuous positive increasing function, which we will assume differentiable at least twice and

p = (p1,p2 . . .) is a n-ple of positive parameters regulating the ‘‘shape’’ of K(u;p). For sake of notational simplicity

we will use also the shortened notation K(u);

• c > 0, /̂ > 0.

In [5] it is studied a particular model, of great biological interest, derived from the family (1):
u0ðtÞ ¼ /ðaþ u2Þðv� uÞ � 1þ bðaþ u2Þ
� �

u;

v0ðtÞ ¼ c� bðaþ u2Þv;
ð2Þ
where K(u) = b(a + u2) (thus: p = (b,a)), / ¼ b/̂ > 0; 0 < a� 1, b > 1 and 0 < c < 1.

We will study in this section the family (1) and in the next section we will apply the results we are going to illustrate

to (2).

The nullclines of (1) are:
v1ðuÞ ¼ u 1þ 1

/̂
þ 1

/̂KðuÞ

 !
; v2ðuÞ ¼

c
KðuÞ ð3Þ
and they are such that 0 < v2ðuÞ 6 c
Kð0Þ ; ð1þ 1

/̂
Þu < v1ðuÞ 6 u 1þ 1=/̂ þ 1

/̂Kð0Þ

� �
. Noting that ð1þ 1

/̂
þ 1

/̂Kð0ÞÞu � v01ð0Þu
and that for u	 1 it is v1ðuÞ � ð1þ 1

/̂
Þu, it not unrealistic to add this additional constraint: the equation v01ðuÞ ¼ 0

has 0 or 2 solutions (idest or V1(u) is increasing or it has a relative maximum and minimum).

A relatively small positively invariant set may be found:
C ¼ ðu; vÞj0 < u <
c

Kð0Þ 1þ 1

/̂

 !�1

and u 6 v 6
c

Kð0Þ

8<
:

9=
;. ð4Þ
Proposition 2.1. There is an unique equilibrium point E = (ue, ve) and it is such that oue
oc > 0.

Proof. From v1(u) = v2(u) one obtains P(u) = 0 where:
P ðuÞ ¼ ð/̂ þ 1ÞKðuÞuþ u� c/̂ ð5Þ
with P(0) < 0, limu!+1P(u) = +1 and P 0(u) > 0, thus there is an unique real solution ue. Geometrically, it is straightfor-

ward to show that ue is an increasing function of the parameter c and from the Dini�s theorem on implicit functions it is
oue
oc

¼ /̂

1þ ð/̂ þ 1Þð1þ ueK 0ðueÞÞ
> 0. � ð6Þ



A. d’Onofrio / Chaos, Solitons and Fractals 27 (2006) 1205–1212 1207
Remark. Remember that E is not fixed, but it is a function of the parameters p and c.

Noticing that u0 ¼ /̂KðuÞðv� v1ðuÞÞ and v 0 = K(u)(v2(u) � v), it is convenient to study the following system:
u0ðtÞ ¼ v� v1ðuÞ;
v0ðtÞ ¼ v2ðuÞ � v;

ð7Þ
which is topologically equivalent [10] to (1) and which, after eliminating v, may be written as a generalized Lienard�s
equation:
u00 þ f ðuÞu0 þ gðuÞu ¼ 0 ð8Þ
(idest u 0 = g � F(u), g 0 = �g(u)) where the Lienard�s functions are:
f ðuÞ ¼ 1þ /̂v01ðuÞ; ð9Þ

gðuÞ ¼ /̂ðv1ðuÞ � v2ðuÞÞ ¼ /̂
P ðuÞ
KðuÞ ð10Þ
and
F ðuÞ ¼
Z s

ue

ð1þ /̂v01ðsÞÞds ¼ u� ue þ /̂ðv1ðuÞ � v1ðueÞÞ ð11Þ
(of course F(ue) = 0)
GðuÞ ¼
Z s

ue

gðsÞds. ð12Þ
Note that G(u) may be seen as a potential energy with of a single absolute minimum and it is limu!+1G(u) = +1. We

are interested, of course, only to the zone corresponding to our invariant set.

It holds the following propositions:

Proposition 2.2. If the parameters p and /̂ are such that f ðu; p; /̂Þ > 0 then E is GAS.

Proof. It is enough to take the ‘‘energy’’ as Liapunov–LaSalle�s function:
Lðu; u0Þ ¼ ðu0Þ2

2
þ GðuÞ ¼ ðv� v1ðuÞÞ2

2
þ GðuÞ. ð13Þ
And apply the La Salle�s theorem [9]. h

It holds also this other proposition involving also the parameter c:

Proposition 2.3. If the parameters c and p are such that f ðu; ; /̂; pÞ > 0 in C then E is GAS.

Proof. Apply the Dulac�s theorem to (7) and the Poincaré–Bendixon�s trichotomy. h

Linearizing near the equilibrium the characteristic equation is
k2 þ ð1þ /̂v1ðueÞÞk þ P 0ðueÞ
KðueÞ

¼ 0. ð14Þ
Being P 0ðueÞ
KðueÞ > 0 of course we obtain that if f(ue) < 0 then E is unstable. However, remembering that we supposed that

v01ðuÞ may have two solutions, the same must be also for f(u) = 0 and let us call them uM(p) < um(p), we have that if

it is
PðuM Þ < 0 and P ðumÞ > 0 ð15Þ
then it must be f(ue) < 0. Defining the two values c1 = Q(uM) and c2 = Q(um) and remembering that C is positively

invariant one has that:

Proposition 2.4. If c1 and c2 exist and
c1ðp; /̂Þ < c < c2ðp; /̂Þ ð16Þ
then E is unstable and there is at least a limit cycle.
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Proposition 2.5. If c < c1 or c > c2 then E is LAS.

For the global stability of E, idest of the cell cycle arrest, we may switch back to the original system (1) and state:

Proposition 2.6. If the parameters c and p in C are such that f(ue) < 0 and such that in C the expression:
Nðu; vÞ ¼ /̂K 0ðuÞðv� uÞ � ð2þ /̂ÞKðuÞ � K 0ðuÞ � 1 ð17Þ
has constant sign then E is GAS.

Proof. The divergence of the vectorial field associated to 1 is equal to N(u,v). If it has constant sign, the global asymp-

totic stability of E derives from the Poincaré–Bendixon�s trichotomy. h

Defining ul 5 umjF(ul) = F(um) and ur 5 u1jF(ur) = F(uM), the analysis of the GAS of E may be further improved:

Proposition 2.7. When c < c1 if for s 2 (ul,ue) it is F(s) 5 F(Z1(s)) (where Z1(s) = G�1(G(s)), s < ue,Z1(s) 5 s) then E is

GAS. When c > c2 if for s 2 (ue,ur) it is F(s) 5 F(Z2(s)) (where Z2(s) = G�1(G(s)), s > ue, Z2(s) 5 s) then E is GAS.

Proof. In such a case, it may be applied Lemma 9 of [7], in the form used in [8], and there are no closed orbits. Note that,

being F(u) N-shaped, for s < ul (s > ur) it is automatically verified that F(s)5 F(Z1(s)) (F(s)5 F(Z2(s))): this means that

if c < c1 and F(um) > 0 (c > c2 and F(uM) < 0) then E is GAS. This is also why one has to test it only in (ul,ue). h

Finally, we state the following conjecture based on geometrical arguments:

Conjecture 2.8. For c < c1 (c > c2) E is GAS.

Proof. For c < c1 we saw that E is LAS. There might be some limit cycles. Moving c towards c1 a limit cycle might have

the following behaviors:

• It might collapse with the frontier of C, which is impossible, since, for example, for whatever positive value of c the

flux is direct towards the interior of C;
• It might collapse with the equilibrium point, which is impossible since there is an unique supercritical Hopf�s bifur-
cation at c = c1.

Therefore E should be stable. h

Coming back to the limit cycles it holds:

Proposition 2.9. If v00(ue) 5 0 then at c = c1 (c = c2) there is an Hopf�s bifurcation.

Proof. Taking c as bifurcation parameter, the characteristic equation k2 + a1k + a0 is such that a0 > 0, a(c1) = 0. When

c = c1 ) u = uM ) a1 = 0 and
oa1
oc

¼ f 0ðueÞ
oue
oc

¼ /̂

1þ ð/̂ þ 1Þð1þ ueK 0ðueÞÞ
v001ðueÞ ð18Þ
thus, if v01ðueÞ 6¼ 0 then there is an hopf�s bifurcation. Furthermore, since at c = c1 ) ue = uM the second derivative of

v1(u) when non zero is evidently negative, the bifurcation is supercritical. For c = c2 the proof is similar. h

The equivalence of (1) with the Lienard�s equation may allow to use some the theorem existing on the uniqueness of

the limit cycle. The most widely known theorem in the field is the Zhang�s theorem [6], which, however requires the

monotonicity of f(u)/g(u), and some recent theorems [7] (or [8] where, however, a non essential condition on g was
added, which does not appear in [7]).

Remark. If the uniqueness and stability of the limit cycle is demonstrated, then, since the unique equilibrium point is

unstable and since C is positively invariant, also the global asymptotic stability holds.
3. Study of model (2)

In this section, we will apply the above propositions to (2). The functional form k(u) = b(a + u2) makes the problem

relatively simple in that all the above formulas may be analytically calculated. For example, the equilibrium equation
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P(ue) = 0 leads to the solution of a third degree algebrical equation, for which the well-known Cardano�s formula is
available. In particular it is
f ðuÞ ¼ 1

b
ð2bþ /Þðu2 þ aÞ2 � ðu2 þ aÞ þ 2a

ðu2 þ aÞ2
; ð19Þ

GðuÞ ¼ 1

2
1þ /

b

� �
ðu2 � u2eÞ þ

1

2b
log

aþ u2

aþ u2e

� �
� c/

b2
ffiffiffi
a

p arctan
uffiffiffi
a

p
� �

� arctan
ueffiffiffi
a

p
� �� �

. ð20Þ
Thus, reading the numerator of f(u) as a parabolic function of (u2 + a), and calculating its discriminant, Proposition

(2.2) becomes:

Proposition 3.1. If
8að2bþ /Þ > 1 ð21Þ
then E is GAS.

Remark. In [5] it was given the criterion a(2b + /) > 1 which is, of course, more restrictive than (21)

Furthermore, from Propositions (2.5) and (2.6), it holds the following:

Proposition 3.2. If c < c1 and
c2 <
a2b2

u2
ð3u þ 4bÞð1þ aðu þ 2bÞÞ ð22Þ
the equilibrium E is GAS.

Proof. In the case of Zhang et al. model
Nðu; vÞ ¼ 2uuv� ð3u þ 4bÞu2 � 1� aðu þ 2bÞ.
N(u,v) change sign only on the hyperbole.
v ¼ 1

2u
ð3u þ 4bÞuþ 1þ aðu þ 2bÞ

u

� �
; ð23Þffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
which has the minimum vm ¼ 3uþ4b 1þaðuþ2bÞ
u . In order to exclude closed paths in C, we may impose vm > c

ba, which

leads to
c2
u2

b2
< a2ð3u þ 4bÞð1þ aðu þ 2bÞÞ.
Note that since Pðc u
bÞ > 0, it is: u2e < c2 u2

b2
and also
a2ð3u þ 4bÞð1þ aðu þ 2bÞÞ < u2M ¼ �aþ 4a

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8aðu þ 2bÞ

p

(as it is easy to see by setting x = 8a(u + 2b)) i.e. when (22) condition holds automatically also c < c1 holds and E is

GAS. h

Remark. In [5] the following GAS criterion is given: c2 < a2b2

u2
u
2
ð1þ aðu þ 2bÞÞ, which is more restrictive than the one

proposed here, since u
2
< 3u þ 4b.

For which regards the Hopf�s bifurcation, the criterion becomes ue 6¼
ffiffiffiffiffi
3a

p
.

For which regards the uniqueness of limit cycle, it has been impossible to apply the Zhang�s theorem since it results

that f(u)/g(u) is not increasing. On the contrary, some uniqueness results were found by applying a theorem of [7]

through a remark in [8] which we rewrite by using our notation:

Theorem 3.3. Suppose that for given parameter the system (2) is such that:

1. There exist u2,u1 such that F(u1) = F(u2) = F(ue) = 0 (observe that it is: 0 < u2 < uM < ue < u1 < c/(ba) and

F 0(uM) == f(uM) = 0) and let it be
GðuM Þ 6 Gðu1Þ 6 Gðu2Þ.
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2. (u � ue)F(u) 6 0 for u 2 (u2,u1);

3. F(u) 5 0 for small but non-zero u;

4. The function
Fig. 1.

F(s) an

u = 2.
F ðuÞ f ðuÞ
gðuÞ
is non decreasing

then it has at most an unique and stable limit cycle.

For example for the following values of the parameters a = 0.01, b = 1.1, u = 2.1 we obtained that for

c 2 [0.168,0.205] the uniqueness conditions required by (3.3) are fulfilled and there is a globally stable limit cycle.
We stress out that the above result may be obtained near integrally through analytical calculations and no simulation
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of the differential model is needed. This result on uniqueness (and GAS) of the limit cycle is interesting, but it shows

clearly that the used theorem is quite restrictive, since the range of c which guarantees the GAS of the limit cycle is small

in comparison with (c1(a,b,u), c2(a,b,u)) which is, in this case, such that (c1,c2) � (0.064,0.414). On the contrary, all

our numerical simulations suggest that the GAS of the cycles holds in all the interval (c1,c2). Furthermore, applying

Proposition 2.7 we obtained that E is gas for c < c1 and for c > c2 (see Fig. 1).

Since periodic perturbations of systems having limit cycles a classical topic of bifurcation and chaos theory, and

since the parameters may exhibit periodically varying dynamics, we performed some numerical simulations (by using

directly 2, of course) by assuming that
Fig. 2

x 2 (0
c ¼ cðtÞ ¼ C0ð1þ d cosðxtÞÞ; 1 > d > �1. ð24Þ
In effect, in such a case the dynamics become very rich with period doublings and ‘‘n-ings’’, and transitions to quasi

periodicity. With reference to Fig. 2, where x is the bifurcation parameter and d = 0.9, we notice that the values

x = x0,2x0,3x0 corresponds to solutions having period T0 since they lies in the ranges where there is one, two and three

points in the bifurcation diagram.
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